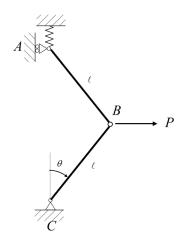
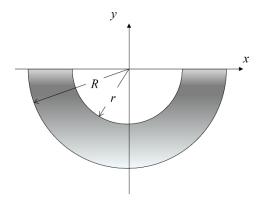
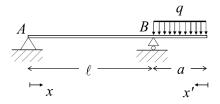

Problème 1 : Le cadre ci-dessous comprend 3 éléments de poutre droites, *AC*, *CD* et *DB*. En ne considérant que le coin *C*, établir les 3 relations entre les forces normales, tangentielles et les moments de de force (équilibre statique d'une portion de l'assemblage).



Problème 2 : Considérer la grue représentée ci-dessous. A l'exception b, toutes les poutres ne reprennent que des efforts axiaux.


- a) Exprimer les forces de réaction aux points A et B en fonction de x_1
- b) Calculer les forces N_{d2} et N_{d3} lorsque la charge F_1 est appliquée à une distance $x_\ell = 1_b$
- c) Dessiner les diagrammes des efforts dans la poutre b, lorsque x_{ℓ} = 2/3 l_b pour une poutre de module et de moment d'inertie donnés par EI

Problème 3 : Déterminer la force P qui doit être appliquée afin que le mécanisme garde la position θ , sachant que le ressort est au repos quand $\theta = 0$



Problème 4 : Pour la section définie ci-contre, déterminer la position du centre de gravité en y.

<u>Problème 5 :</u> Calculer les réactions aux appuis de la poutre ci-dessous, et représenter ensuite les diagrammes des efforts intérieurs T et M avec les valeurs numériques suivantes :

Application : q = 5kN/m, $\ell = 2$ m, a = 1 m

